
Introduction to R: Data Wrangling

Lisa Federer, Research Data Informationist

March 28, 2016

This course is designed to give you a simple and easy introduction to R, a programming language that
can be used for data wrangling and processing, statistical analysis, visualization, and more. This handout
will walk you through every step of today’s class. Throughout the handout, you’ll see the example code
displayed like this:

> print(2 + 2)

[1] 4

The part that is in italics and preceded by the > symbol is the code that you will type. The part below
it is the output you should expect to see. Sometimes code doesn’t have any output to print; in that case,
you’ll just see the code and nothing else.

Also, sometimes the code is too long to fit on a single line of text in this handout. When that is the case,
you will see the code split into separate lines, each starting with a +, like this:

> long_line_of_code <- c("Some really long code", "oh my gosh, how long is it going to be?",

+ "is it going to go on forever?", "I don't know, AGGGHHHHH",

+ "please, make it stop!")

When this is the case, do not insert any line breaks, extra spaces, or the plus sign - your code should be
typed as one single line of code. Note that the default for your display in R Studio is not to wrap lines of
text in your code, but you can turn this on by going to Tools > Global Options > Code Editing, and check
the box next to ”Soft-wrap R source files.”

1 Getting Started

In this class, we’ll be using RStudio, which is what’s known as an integrated development environment (IDE).
One nice shortcut that will be of help to you as you work in RStudio: tab completion. Hit tab after you
type the first part of your command or name, and R will show you some options of what it things you could
mean, and you can select one so you don’t have to type out the whole word. RStudio also allows us to
take some shortcuts that mean we don’t have to code everything by hand. For example, we can use the
navigation pane to set our working directory using the ”Set as Working Directory” option under the ”More”
button. The working directory is the folder where R will look in if we give it a file name, and also where it
will save things if we ask it to do so. We can also set our working directory by using the setwd command.
Here, I’ve specified the folder on my computer where my files are, but you would use the path where your
data files are stored.

> setwd("Z:/Data Services Workgroup/Data Instruction/R Classes/R Basics")

If you want to find out what your current working directory is, you can use getwd:

> getwd()

[1] "Z:/Data Services Workgroup/Data Instruction/R Classes/R Basics"

1

Next we’ll read in our data. We’ll be using a CSV file, but R can read almost any type of file. Let’s check
out the help text for this function first. Do so by typing ?read.csv in the console. We don’t need to use
all of the arguments for the read.csv function. We’ll just use the ones relevant to us, for which the default
would not be what we want.

> master <- read.csv(file = "master.csv", header = TRUE)

You’ll notice that no output has been printed with our code, but if you’ve been successful, you should
now see master listed in your Global Environment pane.

1.1 Troubleshooting and Understanding Errors

When you first get started with R, expect to see lots of error messages! While you get used to the syntax
and using R, it’s natural that you’ll make mistakes. Sometimes it’s hard to figure out what your mistake is,
but here are some helpful hints to troubleshooting some common errors.

> summary(Master)

Error in summary(Master) : object 'Master' not found

R has told me it can’t find what I asked it to look for; in other words, I’ve told R to use some object
that doesn’t exist. If you see this error, check your spelling carefully and make sure you’ve used the correct
capitalization - R is case sensitive.

R also gets confused if you use punctuation incorrectly, since it relies on puncutation marks for meaning.
Beginners often leave out closing punctuation or have extra punctuation marks they don’t need. RStudio is
helpful in this regard because it will add closing punctuation when you type an opening punctuation. For
example, if I type an open paranthesis, Rstudio puts a close paranthesis after it. Of course it’s still possible
to make mistakes, so check your code carefully.

Here is another command that will create an error (I can’t even get it to run correctly in this documen-
tation to make it print for you, but try it yourself.)

> master <- read.csv(file = "master.csv, header = TRUE)

Here I’ve left out the close quotation marks that should come after the .csv. When I run this line, a
+ appears after it in the console, indicating that R is expecting something else. Since I never closed my
quotation marks, it thinks I have more to say. If you see the + appear in your console, click your cursor into
the console and hit the ESCAPE key to interrupt the current command. You should see a > appear in your
console window, which means R is ready for a command. Then fix your code and try again.

> master <- read.csv(file = "master.csv" header = TRUE)

R will get confused if you leave out punctuation or put extra punctuation in. Here, I accidentally left
out the comma between my file argument and header argument, so R gives me an error message about an
unepxected symbol. R isn’t smart enough to tell you what is missing or extra, but it will tell you roughly
where you should be looking for the error - it stops trying to run any code when it finds the error, so I know
that my mistake is somewhere around the header argument.

> master <- read.csv([file = "master.csv", header = TRUE)

Sometimes R will be able to tell you what punctuation it found that it didn’t like, as it does in this case.
I have a random [, so R tells me it doesn’t like that.

> master <- tread.csv(file = "master.csv", header = TRUE)

Error in try(master <- tread.csv(file = "master.csv", header = TRUE)) :

could not find function "tread.csv"

If you make a spelling mistake in a function or when you’re passing an argument, R will tell you that it
couldn’t find that function. Check your spelling and try again.

2

1.2 Getting to Know Your Data

Let’s explore our data and see what we have. There are a few ways we can learn more about what our data
contains. You can simply type the name of your data frame to have it display the whole thing, but if your
dataset is very large, this wouldn’t be very convenient. It might be better just to see a part of your data.
The command head() will show just the first six observations.

> head(master)

playerID birthYear birthMonth birthDay birthCountry birthState birthCity

1 aardsda01 1981 12 27 USA CO Denver

2 aaronha01 1934 2 5 USA AL Mobile

3 aaronto01 1939 8 5 USA AL Mobile

4 aasedo01 1954 9 8 USA CA Orange

5 abadan01 1972 8 25 USA FL Palm Beach

6 abadfe01 1985 12 17 D.R. La Romana La Romana

deathYear deathMonth deathDay deathCountry deathState deathCity nameFirst

1 NA NA NA David

2 NA NA NA Hank

3 1984 8 16 USA GA Atlanta Tommie

4 NA NA NA Don

5 NA NA NA Andy

6 NA NA NA Fernando

nameLast nameGiven weight height bats throws debut finalGame

1 Aardsma David Allan 205 75 R R 4/6/2004 9/28/2013

2 Aaron Henry Louis 180 72 R R 4/13/1954 10/3/1976

3 Aaron Tommie Lee 190 75 R R 4/10/1962 9/26/1971

4 Aase Donald William 190 75 R R 7/26/1977 10/3/1990

5 Abad Fausto Andres 184 73 L L 9/10/2001 4/13/2006

6 Abad Fernando Antonio 220 73 L L 7/28/2010 9/27/2014

retroID bbrefID

1 aardd001 aardsda01

2 aaroh101 aaronha01

3 aarot101 aaronto01

4 aased001 aasedo01

5 abada001 abadan01

6 abadf001 abadfe01

Likewise, tail() will show just the last six.

> tail(master)

playerID birthYear birthMonth birthDay birthCountry birthState

18584 zuninmi01 1991 3 25 USA FL

18585 zupcibo01 1966 8 18 USA PA

18586 zupofr01 1939 8 29 USA CA

18587 zuvelpa01 1958 10 31 USA CA

18588 zuverge01 1924 8 20 USA MI

18589 zwilldu01 1888 11 2 USA MO

birthCity deathYear deathMonth deathDay deathCountry deathState

18584 Cape Coral NA NA NA

18585 Pittsburgh NA NA NA

18586 San Francisco 2005 3 25 USA CA

18587 San Mateo NA NA NA

18588 Holland 2014 9 8 USA AZ

18589 St. Louis 1978 3 27 USA CA

3

deathCity nameFirst nameLast nameGiven weight height bats throws

18584 Mike Zunino Michael Accorsi 220 74 R R

18585 Bob Zupcic Robert 220 76 R R

18586 Burlingame Frank Zupo Frank Joseph 182 71 L R

18587 Paul Zuvella Paul 173 72 R R

18588 Tempe George Zuverink George 195 76 R R

18589 La Crescenta Dutch Zwilling Edward Harrison 160 66 L L

debut finalGame retroID bbrefID

18584 6/12/2013 9/28/2014 zunim001 zuninmi01

18585 9/7/1991 8/4/1994 zupcb001 zupcibo01

18586 7/1/1957 5/9/1961 zupof101 zupofr01

18587 9/4/1982 5/2/1991 zuvep001 zuvelpa01

18588 4/21/1951 6/15/1959 zuveg101 zuverge01

18589 8/14/1910 7/12/1916 zwild101 zwilldu01

If you’d like to see a different number of results, you can specify that by adding an additional argument
to your head/tail function. For example, this will show the first 2 observations.

> head(master, n = 2)

playerID birthYear birthMonth birthDay birthCountry birthState birthCity

1 aardsda01 1981 12 27 USA CO Denver

2 aaronha01 1934 2 5 USA AL Mobile

deathYear deathMonth deathDay deathCountry deathState deathCity nameFirst

1 NA NA NA David

2 NA NA NA Hank

nameLast nameGiven weight height bats throws debut finalGame retroID

1 Aardsma David Allan 205 75 R R 4/6/2004 9/28/2013 aardd001

2 Aaron Henry Louis 180 72 R R 4/13/1954 10/3/1976 aaroh101

bbrefID

1 aardsda01

2 aaronha01

We can get ask for a list of the variables or column names in our dataset, which is useful in case we need
to double check the spelling or capitalization of our variables. This is also helpful because we can use it to
find out which column number corresponds to which variable. We’ll see later that we can refer to a column
by its number or name.

> names(master)

[1] "playerID" "birthYear" "birthMonth" "birthDay" "birthCountry"

[6] "birthState" "birthCity" "deathYear" "deathMonth" "deathDay"

[11] "deathCountry" "deathState" "deathCity" "nameFirst" "nameLast"

[16] "nameGiven" "weight" "height" "bats" "throws"

[21] "debut" "finalGame" "retroID" "bbrefID"

We can also get some basic summary statistics about our data.

> summary(master)

playerID birthYear birthMonth birthDay

aardsda01: 1 Min. :1820 Min. : 1.000 Min. : 1.00

aaronha01: 1 1st Qu.:1894 1st Qu.: 4.000 1st Qu.: 8.00

aaronto01: 1 Median :1935 Median : 7.000 Median :16.00

aasedo01 : 1 Mean :1930 Mean : 6.626 Mean :15.62

abadan01 : 1 3rd Qu.:1967 3rd Qu.:10.000 3rd Qu.:23.00

4

abadfe01 : 1 Max. :1994 Max. :12.000 Max. :31.00

(Other) :18583 NA's :145 NA's :315 NA's :472

birthCountry birthState birthCity deathYear

USA :16322 CA : 2115 Chicago : 376 Min. :1872

D.R. : 619 PA : 1414 Philadelphia: 356 1st Qu.:1941

Venezuela: 321 NY : 1202 St. Louis : 296 Median :1966

P.R. : 246 IL : 1051 New York : 267 Mean :1963

CAN : 244 OH : 1030 Brooklyn : 240 3rd Qu.:1988

Cuba : 191 TX : 873 Los Angeles : 228 Max. :2014

(Other) : 646 (Other):10904 (Other) :16826 NA's :9364

deathMonth deathDay deathCountry deathState

Min. : 1.000 Min. : 1.00 :9366 :9420

1st Qu.: 3.000 1st Qu.: 8.00 USA :9017 CA :1059

Median : 6.000 Median :15.00 CAN : 63 PA : 792

Mean : 6.486 Mean :15.55 Cuba : 26 NY : 692

3rd Qu.:10.000 3rd Qu.:23.00 Mexico : 23 OH : 576

Max. :12.000 Max. :31.00 Venezuela: 21 FL : 545

NA's :9365 NA's :9366 (Other) : 73 (Other):5505

deathCity nameFirst nameLast nameGiven

:9370 Bill : 549 Smith : 150 John Joseph : 74

Philadelphia: 238 John : 480 Johnson : 110 John : 56

Chicago : 181 Jim : 443 Jones : 97 William Henry : 53

St. Louis : 175 Mike : 429 Brown : 89 William Joseph: 48

Los Angeles : 136 Joe : 396 Miller : 88 William : 44

New York : 124 Bob : 341 Williams: 76 Michael Joseph: 42

(Other) :8365 (Other):15951 (Other) :17979 (Other) :18272

weight height bats throws debut

Min. : 65.0 Min. :43.00 : 1190 : 979 : 190

1st Qu.:170.0 1st Qu.:71.00 B: 1150 L: 3542 1884-05-01: 36

Median :185.0 Median :72.00 L: 4814 R:14068 1879-05-01: 26

Mean :185.6 Mean :72.24 R:11435 1882-05-02: 26

3rd Qu.:197.0 3rd Qu.:74.00 1884-04-17: 25

Max. :320.0 Max. :83.00 4/13/1954 : 24

NA's :872 NA's :809 (Other) :18262

finalGame retroID bbrefID

9/28/2014: 464 : 54 : 1

9/27/2014: 213 aardd001: 1 aardsda01: 1

: 190 aaroh101: 1 aaronha01: 1

9/26/2014: 105 aarot101: 1 aaronto01: 1

9/25/2014: 55 aased001: 1 aasedo01 : 1

9/29/2013: 54 abada001: 1 abadan01 : 1

(Other) :17508 (Other) :18530 (Other) :18583

Different types of stats are shown depending on the type of variable. For example, some of the variables,
like weight, give us the mean, median, and other summary stats. Other variables, like birthState, give a
count of how many items are in each category. Let’s explore why this is by figuring out the class of these
variables. A variable is referred to by using the date frame name, the $ and then the variable name.

> class(master$birthState)

[1] "factor"

> class(master$weight)

[1] "integer"

5

Another way we can get that information is by asking R to show us our data’s structure.

> str(master)

'data.frame': 18589 obs. of 24 variables:

$ playerID : Factor w/ 18589 levels "aardsda01","aaronha01",..: 1 2 3 4 5 6 7 8 9 10 ...

$ birthYear : int 1981 1934 1939 1954 1972 1985 1854 1877 1869 1866 ...

$ birthMonth : int 12 2 8 9 8 12 11 4 11 10 ...

$ birthDay : int 27 5 5 8 25 17 4 15 11 14 ...

$ birthCountry: Factor w/ 53 levels "","Afghanistan",..: 50 50 50 50 50 18 50 50 50 50 ...

$ birthState : Factor w/ 239 levels "","AB","Aberdeen",..: 42 6 6 28 66 104 168 168 222 144 ...

$ birthCity : Factor w/ 4683 levels "","Aberdeen",..: 1085 2698 2698 3071 3137 2195 3256 2273 1328 1372 ...

$ deathYear : int NA NA 1984 NA NA NA 1905 1957 1962 1926 ...

$ deathMonth : int NA NA 8 NA NA NA 5 1 6 4 ...

$ deathDay : int NA NA 16 NA NA NA 17 6 11 27 ...

$ deathCountry: Factor w/ 23 levels "","American Samoa",..: 1 1 21 1 1 1 21 21 21 21 ...

$ deathState : Factor w/ 93 levels "","AB","AK","AL",..: 1 1 26 1 1 1 57 25 88 12 ...

$ deathCity : Factor w/ 2527 levels "","Aberdeen",..: 1 1 90 1 1 1 1716 750 457 1960 ...

$ nameFirst : Factor w/ 2268 levels "","A. J.","Aaron",..: 505 906 2049 588 72 764 1133 638 156 332 ...

$ nameLast : Factor w/ 9605 levels "Aardsma","Aaron",..: 1 2 2 3 4 4 5 6 7 7 ...

$ nameGiven : Factor w/ 12264 levels "","A. Harry",..: 2451 5033 11261 2837 3678 3712 6527 3149 937 1691 ...

$ weight : int 205 180 190 190 184 220 192 170 175 169 ...

$ height : int 75 72 75 75 73 73 72 71 71 68 ...

$ bats : Factor w/ 4 levels "","B","L","R": 4 4 4 4 3 3 4 4 4 3 ...

$ throws : Factor w/ 3 levels "","L","R": 3 3 3 3 2 2 3 3 3 2 ...

$ debut : Factor w/ 9910 levels "","10/1/1900",..: 2806 1555 1411 6077 7976 6177 233 1259 1002 1061 ...

$ finalGame : Factor w/ 8924 levels "","10/1/1906",..: 8477 148 8255 155 1526 8384 349 7390 1324 1356 ...

$ retroID : Factor w/ 18536 levels "","aardd001",..: 2 3 4 5 6 7 8 9 10 11 ...

$ bbrefID : Factor w/ 18589 levels "","aardsda01",..: 2 3 4 5 6 7 8 9 10 11 ...

2 Processing and Working with Data

In this section we’ll look at how to use R to easily do some basic processing and cleaning of our data to make
it easier to work with. This data wrangling step is of huge importance to any sort of data analysis and is
typically about 80% of any data science process.

One of the things we might want to do is to take two different datasets and combine them using some
unique ID that both datasets share. R is very good at this! Let’s read in another dataset about our baseball
players. Now we will have two different data frames to work with.

> batting <- read.csv(file = "batting.csv", header = TRUE)

2.1 Subsetting

It’s often desirable to use just a subset of data, particularly with a large dataset. Before we try to merge our
batting data with our master table, we’ll create some new data frames that contain just parts of our larger
dataset.

Let’s create a new data frame using just the data from 2014. There are a number of ways we could do
this. First, we could use the subset function to select observations that exactly meet a specific criteria, in
this case, only those from the year 2014.

> batting2014 <- subset(batting, yearID == "2014")

Since year is an integer variable we can also use operators for subsetting, like selecting all observations
that are greater than or equal to 2014. We can also use Boolean operators, via the ampersand (for AND)
and the pipe sign (for OR) to create complex conditions.

6

> batting2014 <- subset(batting, yearID >= 2014)

> frequent_batting2014 <- subset(batting, yearID >= 2014 & AB >

+ 20)

We can even nest conditions with parentheses to get really specific, like here, where we’ve selected just
those players who had more than 50 runs OR more than 100 homers in the year 2014.

> best_batting2014 <- subset(batting, yearID >= 2014 & (R > 50 |

+ HR >= 25))

Another way we can subset data is by referring to specific rows, columns, or both using the []. When
something is inside square brackets, R interprets it as [row, column]. We can refer to just rows, just columns,
or both, using the number of the row/column. We can also ask for a set of rows or columns, referred to as a
slice, using the :. For example, here I’m going to create a new data frame with just the first 5 observations
in my batting data frame. Because I put nothing after the comma, it will take all the columns for those first
5 observations.

> first5 <- batting[1:5,]

Conversely, if I put nothing before the comma, I’ll have all of the rows, but just the first two columns of
all of those observations.

> player.year <- batting[, 1:2]

I can also remove things I don’t want. Here I’m making a new dataset with everything except the 3rd
column.

> no_3rd <- batting[, -3]

I can also specify both row and column information if I want.

> new_batting <- batting[1:100, -3]

I can use the : to take all the rows or columns in a range, but I can also use c() (fun fact: the c stands
for concatenate, which means to link things together in a series!) to refer to some specific rows or columns,
such as here, where I’m taking rows 1-100 and 400-425 of columns 1, 2, and 5.

> new_batting <- batting[c(1:100, 400:425), c(1, 2, 5)]

I can even have R generate a random sample for me. Here, I’ve requested it to look through all the rows in
my batting dataset and choose 50 random observations.

> random.batting <- batting[sample(1:nrow(batting), 50),]

2.2 Renaming Variables

One of the things you may have noticed about our dataset is that our variable names aren’t very descriptive.
We have 22 variables, but most of them are just a letter, which isn’t helpful to us if we don’t have the
codebook in front of us. Let’s rename some of our variables. As is so often the case with R, there are many
ways to do this! One way is to tell R to take look through the variable names for the one that is currently
called R and rename it as runs.

> names(batting2014)[names(batting2014) == "R"] <- "runs"

I can also use the number of the column to tell R which variable to rename.

> names(batting2014)[6] <- "games"

Another, even easier, way to do this relies on a package called plyr.

7

2.3 Installing and Working with Packages

R has quite a bit of built-in functionality, but there are also many, many free packages that allow us to do
other things that aren’t part of the base R functionality. We can download and install these packages, then
tell R which packages you want to use, in order to accomplish lots of different things. Working with packages
is one thing that’s much easier with RStudio. We can interact with the Packages tab and RStudio will figure
out the right code to run for us. Using the install button, install the package plyr now.

once you’ve installed a package, you need to tell RStudio when you want to use it. You can do that by
checking the box next to its name in the Packages tab list, or you can do so by loading it using the library()
function.

> library(plyr)

Now we can use the handy rename function that’s part of plyr. Simply enter the names of all the variables
you’d like to rename. Notice the variable ”X2B.” Variables can’t start with numbers, so when R read our
CSV file in, it changed the variable name ”2B” to ”X2B”

> batting2014 <- rename(batting2014, c(AB = "at_bats", H = "hits",

+ X2B = "doubles"))

Let’s check out our new names for our batting2014 dataset

> names(batting2014)

[1] "playerID" "yearID" "stint" "teamID" "lgID" "games"

[7] "at_bats" "runs" "hits" "doubles" "X3B" "HR"

[13] "RBI" "SB" "CS" "BB" "SO" "IBB"

[19] "HBP" "SH" "SF" "GIDP"

2.4 Merging Datasets

Now that we’ve gotten our batting dataset renamed, let’s merge our master dataset with player info, with
our batting dataset. We can merge two datasets using the merge() function as long as the two datasets
share at least one common column name. Let’s see if they do. Both the master and the batting datasets
have a variable called playerID, which is a unique identifier for each player. I’m going to create a new data
frame by merging my two data frames.

> full_data <- merge(batting2014, master, by = "playerID")

Notice that our new data frame has 1435 observations. Each of our players has been matched with his
master data. But not every player in the master list of 18,000+ players is in our 2014 batting dataset. What
if we wanted to still include all players in the new data frame, even if we didn’t have their batting details?
In the merge function, our first dataframe is considered X, and the second Y. So if we use all.y = TRUE, R
will add every single observation from the master list, even if there is no corresponding match in batting.

> full_data_all <- merge(batting2014, master, by = "playerID",

+ all.y = TRUE)

2.5 Recoding Data, Creating New Variables, and Changing Data Types

Sometimes it’s desirable to recode data (for example, changing all No responses to 0 and Yes responses to
1), create new variables based on existing data, or adjust the class of data (for example, changing a factor
to an ordered factor).

Let’s suppose we’d like to recode our data to use the full state name instead of the state abbreviation in
our birth state column. We could do this for every state, but we’ll just do a couple here so you get the idea.
The revalue function we’ll use here is part of the plyr package.

> full_data$birthState <- revalue(full_data$birthState, c(TX = "Texas",

+ CA = "California"))

8

If we look at our summary of our birth state variable now, we see that we have Texas and California
spelled out, instead of abbreviated. (Note that I’ve included the maxsum argument here - this allows me
to specify that I would only like to see the first n observations, rather than the entire summary for this
variable.)

> summary(full_data$birthState, maxsum = 5)

California Texas FL (Other)

223 119 91 52 950

Sometimes it’s useful to create a new variable based on some existing data. For example, we could make
a new ordinal variable called based on the height variable, categorizing our players as short, average, or tall.
We’ll do this one category at a time.

> full_data$rel_height[full_data$height < 70] <- "short"

> full_data$rel_height[full_data$height >= 70 & full_data$height <=

+ 75] <- "average"

> full_data$rel_height[full_data$height > 75] <- "tall"

We have our new variable now, but we have a problem:

> class(full_data$rel_height)

[1] "character"

Our new variable was created as a character variable, because R saw that we had entered letters and
made the assumption that this would be a character variable. It would be better to create a factor variable
from this, because this is actually an ordinal variable. If R considers it a character variable, it’s just seeing
the data as a bunch of letters with no meaning. Actually, there is more meaning to our variable than that,
so we’re going to turn out data into an ordered factor, so that R knows that short is shorter than average,
which is shorter than tall.

To do this, first we need to convert the variable to a factor variable.

> full_data$rel_height <- as.factor(full_data$rel_height)

At this point, it lacks ordering, so there is no understood relationship - the three categories are just presumed
to be three separate groups. One way we can tell that R doesn’t know the order of our factor levels yet is
by having it show us a table of values. R arranges the table in alphabetical order.

> table(full_data$rel_height)

average short tall

1055 62 318

Now that this variable is a factor, we can add ordering to the variable to introduce the relationship
between the different groups. This would be important for certain types of analyses (for example, if you were
analyzing Likert scale data using some packages) and would also ensure that our data points are arranged
correctly if we want to create a visualization of our data.

> full_data$rel_height <- factor(full_data$rel_height, levels = c("short",

+ "average", "tall"))

Now we can see our data are in the correct order.

> table(full_data$rel_height)

short average tall

62 1055 318

We can also create new variables that transform existing variables by doing some math on it. For
example, right now we have our weight in pounds, but perhaps we’d like to change that to kilograms. I’ll
simply multiply my weight column by the multiplier to convert between pounds and kilograms and assign
the output to a new column.

> full_data$wt_kg <- full_data$weight * 0.453592

9

2.6 Dealing with NAs

Sometimes we are missing data for whatever reason. Typically this is handled in R by using NA. In some
cases, this can cause some issues for us. For example, suppose we want to calculate the mean number of
runs for all our players.

> mean(full_data$runs)

[1] 13.77073

Because we have some NA values in our runs variable, the mean is also NA. However, we can tell R to ignore
the NAs when it’s doing the calculation and just give us the mean of the existing data in this column.

> mean(full_data$runs, na.rm = TRUE)

[1] 13.77073

Sometimes it’s desirable to create a subset of our data that only contains observations for which we have
all the data, in other words, no NAs. We can do this using the na.omit() function. This function will remove
all observations that are not complete, that is to say, those that are missing data in any variable. Keep in
mind that this will delete the entire row if it finds even one NA in that row.

> no_na <- na.omit(batting)

A more conservative approach that might be acceptable is just to remove those observations that have
NAs in key variables. For example, maybe I want only those players for whom I have a value in the runs
variable, and I want to discard all the players whose value for runs is NA. I can do that by using !is.na. The
exclamation mark stands for NOT - in other words, I’m asking for everything that is NOT NA.

> has_runs <- full_data[!is.na(full_data$runs),]

As a note, we could have also specified an NA value when we were reading in our data file. For example,
suppose when I created my CSV, I used the code 999 to indicate NA. I could pass an additional argument
to the read.csv function telling it to look for all 999s and replace that with NA when it’s reading in my data.

> new_data <- read.csv(file = "master.csv", na.strings = "999")

2.7 Working with Tables

So far we’ve primarily dealt with our data in the form of a data frame. Another class of data that we might
want to use is tables. Some statistical tests require that data be in a table. Tables are also nice when we
want to get a feel for how our data are distributed. For example, let’s suppose we’d like to create a table of
height and whether a player is left or right-handed. We first need to make a minor modification to our data
to remove empty levels from our ”throws” variable, which tells us whether a player is left or right handed.

> full_data$throws <- factor(full_data$throws)

To create our table, we simply tell R what variables we want included.

> handedtbl <- table(full_data$throws, full_data$rel_height)

> handedtbl

short average tall

L 9 234 78

R 53 821 240

The order in which we pass our variables to the table function determines which are columns and which
are rows. If we want to transpose our table, we’d simply change the order we pass our variable names.

> handedtbl <- table(full_data$rel_height, full_data$throws)

> handedtbl

10

L R

short 9 53

average 234 821

tall 78 240

We can also create a proportion table - rather than giving us the raw values, the proportions are calculated.
We can specify whether we want proportions calculated across rows (using margin = 1) or columns (using
margin = 2).

> prop.handed <- prop.table(handedtbl, margin = 1)

> prop.handed

L R

short 0.1451613 0.8548387

average 0.2218009 0.7781991

tall 0.2452830 0.7547170

> prop.handed <- prop.table(handedtbl, margin = 2)

> prop.handed

L R

short 0.02803738 0.04757630

average 0.72897196 0.73698384

tall 0.24299065 0.21543986

3 Iteration and the Apply Functions

One of the great benefits of R is that we can use it to automate a lot of the work we need to do to our data.
We don’t have to manually change or analyze our data column by column or row by row - we can write one
set of code and iterate it many times over a set of data.

If you’re familiar with other programming languages, you may be used to doing this type of iteration
using what’s called a for loop. Though it’s possible to write for loops in R, this is somewhat frowned upon
because it takes longer and is less efficient than using some other methods of iteration. We’ll focus on these
other methods here.

3.1 Apply

There are several different apply functions that take your instructions and apply them over a set of data.
The first, and most basic, is the apply() function, which will do your function over set of columns or rows.
We’ll specify whether we want columns or rows (or both) in the same way we did above when we referred to
”margins” in our tables. For example, suppose I’d like to find the mean for each of my columns in my data
frame.

The apply function takes 3 arguments:

• the data of interest

• the margin I want (1 for row, 2 for column, c(1,2) for both)

• the function I want to apply (in this case, mean)

Another note about how I’ve done this here - remember how the mean function will return NA if our
data has any NA values? I want to remove those NA values and get the mean for the non-NA data. I’m also
only interested in the columns containing numeric values, which in our data frame are columns 6-22. I don’t
have to create a new data frame to do this - I can just nest my functions and put it all in one line of code.

> apply(na.omit(full_data[, 6:22]), 2, mean)

11

games at_bats runs hits doubles X3B

48.4766551 115.4104530 13.7707317 28.9860627 5.6703833 0.5916376

HR RBI SB CS BB SO

2.9170732 13.0627178 1.9261324 0.7212544 9.7700348 26.0912892

IBB HBP SH SF GIDP

0.6864111 1.1512195 0.9358885 0.8898955 2.5149826

Now we have the mean for every variable we’re interested in!

3.2 By

Let’s suppose we’re interested in those same means, but this time, we want to break it up by groups. Our
data include which league the player is in, the American League or the National League, and I want to see
if there are differences in the means for these two leagues. We can do so using the by() function.

The by function takes 3 arguments:

• the data I’m interested in looking at (we’re going to use the same data as we just used for apply)

• the variable I want to group on (in this case, lgID)

• the function I want to apply (I’m using colMeans now instead of means because I’m no longer given
that margins option to specify how to apply the function and therefore I need to give more specific
instructions)

> by(na.omit(full_data[, 6:22]), full_data$lgID, colMeans)

full_data$lgID: AA

NULL

--

full_data$lgID: AL

games at_bats runs hits doubles X3B

46.6970509 111.4249330 13.6206434 28.1943700 5.5388740 0.5227882

HR RBI SB CS BB SO

2.8967828 12.9168901 1.8686327 0.6595174 9.5053619 24.4571046

IBB HBP SH SF GIDP

0.6313673 1.1126005 0.6126005 0.9101877 2.4852547

--

full_data$lgID: FL

NULL

--

full_data$lgID: NL

games at_bats runs hits doubles X3B

50.4034833 119.7256894 13.9332366 29.8432511 5.8127721 0.6661829

HR RBI SB CS BB SO

2.9390421 13.2206096 1.9883890 0.7880987 10.0566038 27.8606676

IBB HBP SH SF GIDP

0.7460087 1.1930334 1.2859216 0.8679245 2.5471698

--

full_data$lgID: PL

NULL

--

full_data$lgID: UA

NULL

12

3.3 The Other Apply Functions

There are a whole bunch of other apply-like functions that can be used depending on what type of data
you’re putting into the function and what kind of data you hope to get out. For example, lapply returns a
list, thus the ”l” in the name, while mapply lets you apply to the funciton to multiple arguments, thus the
”m.” We won’t get into these here, but be aware that there are lots of options available depending on the
type of data you’re working with.

4 Restructuring and Reorganizing Data

We’ve now dealt with a variety of functions that let us modify and process our data. Now, we’ll deal with
some ways of restructuring and reorganizing our data.

4.1 Sorting Data

First, let’s look at how to sort a data frame. Right now, our data frame is sorted alphabetically by player
ID, but what if I’d like to sort my data by weight? We can sort by any variable using the order function.
(By the way, if you were saving this, you would assign it a name using the assignment operator, but here,
I’m not saving this as a new data frame and I’m wrapping it in the head() function so that the whole several
thousand observations long data frame isn’t printed in your handout.)

> head(full_data[order(full_data$weight),])

playerID yearID stint teamID lgID games at_bats runs hits doubles X3B HR

34 amarial01 2014 1 SDN NL 148 423 39 101 13 2 5

582 herredi01 2014 1 NYN NL 18 59 6 13 0 1 3

1119 rojasmi02 2014 1 LAN NL 85 149 16 27 3 0 1

1178 sardilu01 2014 1 TEX AL 43 115 12 30 6 0 0

110 bettsmo01 2014 1 BOS AL 52 189 34 55 12 1 5

333 diazjo02 2014 1 TOR AL 23 38 3 6 1 0 0

RBI SB CS BB SO IBB HBP SH SF GIDP birthYear birthMonth birthDay

34 40 12 1 29 69 5 1 8 5 6 1989 4 6

582 11 0 0 7 17 0 0 0 0 3 1994 3 3

1119 9 0 0 10 28 1 2 1 0 5 1989 2 24

1178 8 5 1 5 21 0 2 3 0 5 1993 5 16

110 18 7 3 21 31 0 2 1 0 2 1992 10 7

333 4 1 0 3 14 0 2 2 0 1 1985 4 10

birthCountry birthState birthCity deathYear deathMonth deathDay

34 Venezuela Anzoategui Barcelona NA NA NA

582 Colombia Bolivar Cartagena NA NA NA

1119 Venezuela Miranda Los Teques NA NA NA

1178 Venezuela Bolivar Upata NA NA NA

110 USA TN Nashville NA NA NA

333 USA FL Miami Beach NA NA NA

deathCountry deathState deathCity nameFirst nameLast nameGiven weight

34 Alexi Amarista Alexi Jose 150

582 Dilson Herrera Dilson Jose 150

1119 Miguel Rojas Miguel Elias 150

1178 Luis Sardinas Luis Alexander 150

110 Mookie Betts Markus Lynn 155

333 Jonathan Diaz Jonathan 155

height bats throws debut finalGame retroID bbrefID rel_height

34 66 L R 4/26/2011 9/28/2014 amara001 amarial01 short

582 70 R R 8/29/2014 9/20/2014 herrd002 herredi01 average

1119 72 R R 6/6/2014 9/28/2014 rojam002 rojasmi02 average

13

1178 73 B R 4/20/2014 9/28/2014 sardl001 sardilu01 average

110 69 R R 6/29/2014 9/28/2014 bettm001 bettsmo01 short

333 69 R R 6/29/2013 5/12/2014 diazj004 diazjo02 short

wt_kg

34 68.03880

582 68.03880

1119 68.03880

1178 68.03880

110 70.30676

333 70.30676

By default, the sort will be done ascending, but I can also switch to a descending sort by passing the
decreasing argument to the function.

> head(full_data[order(full_data$weight, decreasing = TRUE),])

playerID yearID stint teamID lgID games at_bats runs hits doubles X3B HR

334 diazju03 2014 1 CIN NL 36 0 0 0 0 0 0

150 broxtjo01 2014 1 CIN NL 51 0 0 0 0 0 0

151 broxtjo01 2014 2 MIL NL 11 0 0 0 0 0 0

262 colonba01 2014 1 NYN NL 31 62 3 2 1 0 0

362 dunnad01 2014 1 CHA AL 106 363 43 80 17 0 20

363 dunnad01 2014 2 OAK AL 25 66 6 14 1 0 2

RBI SB CS BB SO IBB HBP SH SF GIDP birthYear birthMonth birthDay

334 0 0 0 0 0 0 0 0 0 0 1984 2 27

150 0 0 0 0 0 0 0 0 0 0 1984 6 16

151 0 0 0 0 0 0 0 0 0 0 1984 6 16

262 0 0 0 0 33 0 0 7 0 0 1973 5 24

362 54 1 1 65 132 5 3 0 4 5 1979 11 9

363 10 0 0 6 27 0 4 0 0 0 1979 11 9

birthCountry birthState birthCity deathYear deathMonth deathDay

334 D.R. La Romana La Romana NA NA NA

150 USA GA Augusta NA NA NA

151 USA GA Augusta NA NA NA

262 D.R. Puerto Plata Altamira NA NA NA

362 USA Texas Houston NA NA NA

363 USA Texas Houston NA NA NA

deathCountry deathState deathCity nameFirst nameLast nameGiven weight

334 Jumbo Diaz Jose Rafael 315

150 Jonathan Broxton Jonathan Roy 295

151 Jonathan Broxton Jonathan Roy 295

262 Bartolo Colon Bartolo 285

362 Adam Dunn Adam Troy 285

363 Adam Dunn Adam Troy 285

height bats throws debut finalGame retroID bbrefID rel_height

334 76 R R 6/20/2014 9/27/2014 diazj005 diazju03 tall

150 76 R R 7/29/2005 9/27/2014 broxj001 broxtjo01 tall

151 76 R R 7/29/2005 9/27/2014 broxj001 broxtjo01 tall

262 71 R R 4/4/1997 9/28/2014 colob001 colonba01 average

362 78 L R 7/20/2001 9/28/2014 dunna001 dunnad01 tall

363 78 L R 7/20/2001 9/28/2014 dunna001 dunnad01 tall

wt_kg

334 142.8815

150 133.8096

151 133.8096

14

262 129.2737

362 129.2737

363 129.2737

I can even sort by two variables if I want. For example, say I want to sort by birth year, and then in
addition to that, sort by month. For that matter, I can even throw birth day in as well. The order in which
I pass the variables to the order function is the order in which the data will be sorted.

> head(full_data[order(full_data$birthYear, full_data$birthMonth,

+ full_data$birthDay),])

playerID yearID stint teamID lgID games at_bats runs hits doubles X3B HR

473 giambja01 2014 1 CLE AL 26 60 3 8 2 0 2

624 ibanera01 2014 1 LAA AL 57 166 16 26 5 2 3

625 ibanera01 2014 2 KCA AL 33 80 7 15 3 1 2

564 hawkila01 2014 1 COL NL 57 1 0 0 0 0 0

262 colonba01 2014 1 NYN NL 31 62 3 2 1 0 0

1276 suzukic01 2014 1 NYA AL 143 359 42 102 13 2 1

RBI SB CS BB SO IBB HBP SH SF GIDP birthYear birthMonth birthDay

473 5 0 0 9 12 2 1 0 0 3 1971 1 8

624 21 3 2 23 43 0 0 0 1 1 1972 6 2

625 5 0 0 10 16 0 0 0 0 1 1972 6 2

564 0 0 0 0 1 0 0 0 0 0 1972 12 21

262 0 0 0 0 33 0 0 7 0 0 1973 5 24

1276 22 15 3 21 68 1 1 2 2 3 1973 10 22

birthCountry birthState birthCity deathYear deathMonth deathDay

473 USA California West Covina NA NA NA

624 USA NY New York NA NA NA

625 USA NY New York NA NA NA

564 USA IN Gary NA NA NA

262 D.R. Puerto Plata Altamira NA NA NA

1276 Japan Aichi Nichi Kasugai-gun NA NA NA

deathCountry deathState deathCity nameFirst nameLast nameGiven weight

473 Jason Giambi Jason Gilbert 240

624 Raul Ibanez Raul Javier 225

625 Raul Ibanez Raul Javier 225

564 LaTroy Hawkins LaTroy 220

262 Bartolo Colon Bartolo 285

1276 Ichiro Suzuki Ichiro 170

height bats throws debut finalGame retroID bbrefID rel_height

473 75 L R 5/8/1995 9/27/2014 giamj001 giambja01 average

624 74 L R 8/1/1996 9/28/2014 ibanr001 ibanera01 average

625 74 L R 8/1/1996 9/28/2014 ibanr001 ibanera01 average

564 77 R R 4/29/1995 9/27/2014 hawkl001 hawkila01 tall

262 71 R R 4/4/1997 9/28/2014 colob001 colonba01 average

1276 71 L R 4/2/2001 9/28/2014 suzui001 suzukic01 average

wt_kg

473 108.86208

624 102.05820

625 102.05820

564 99.79024

262 129.27372

1276 77.11064

15

4.2 Transforming and Summarizing Data

We looked at the by function, which allowed us to apply a function to data by group to get some summary
data for each of our groups. The ddply function in the plyr package can also be useful for doing this. Let’s
suppose I’d like to compile some team stats by finding all the players for each team, and adding up their
home runs and runs.

The ddply function needs a few things:

• the data (I’ll use my batting data frame here)

• the variable(s) I want to group on (here I’m using both team and year, so I’ll get the stats by team for
each year)

• I’m specifying that I want to summarize - this means that a new, condensed data frame will be created
with just the data I’m specifying here

• what I want to call my new variables and how I want them to be calculated. In this example, I’m
getting the total runs and homeruns per team, per year by using the sum function, as well as the mean
homeruns and runs per player, per year, per team. I’m also specifying that I want to omit NAs just in
case I have any missing data

> team_summary <- ddply(batting, c("teamID", "yearID"), summarize,

+ total_homeruns = sum(HR, na.rm = TRUE), total_runs = sum(R,

+ na.rm = TRUE), mean_homeruns = mean(HR, na.rm = TRUE),

+ mean_runs = mean(R, na.rm = TRUE))

> head(team_summary)

teamID yearID total_homeruns total_runs mean_homeruns mean_runs

1 ALT 1884 2 90 0.1176471 5.294118

2 ANA 1997 161 829 4.6000000 23.685714

3 ANA 1998 147 787 3.8684211 20.710526

4 ANA 1999 158 711 4.1578947 18.710526

5 ANA 2000 236 864 5.2444444 19.200000

6 ANA 2001 158 691 4.1578947 18.184211

4.3 Reshaping Data from Long to Wide

There are lots and lots of ways to organize your data. Some of this will depend on your personal preference.
However, sometimes the analyses you will want to do will require your data to be organized in a certain way.
This is often the case when you have observations taken from multiple time points, as is the case with our
team summary date. Let’s take a look at the first 10 rows of our team summary:

> head(team_summary, n = 10)

teamID yearID total_homeruns total_runs mean_homeruns mean_runs

1 ALT 1884 2 90 0.1176471 5.294118

2 ANA 1997 161 829 4.6000000 23.685714

3 ANA 1998 147 787 3.8684211 20.710526

4 ANA 1999 158 711 4.1578947 18.710526

5 ANA 2000 236 864 5.2444444 19.200000

6 ANA 2001 158 691 4.1578947 18.184211

7 ANA 2002 152 851 3.8000000 21.275000

8 ANA 2003 150 736 3.4883721 17.116279

9 ANA 2004 162 836 4.2631579 22.000000

10 ARI 1998 159 665 3.4565217 14.456522

16

Notice how we have several rows for each of the teams, one for each year. This is what we call a ”long”
format. It’s pretty human-readable and makes sense to us to look at, but it doesn’t really conform to the
principles of ”tidy” data and therefore can be a bit problematic for R to work with.

To make our data ”tidy,” we need to convert it from a long format to a wide format. In a wide format,
each observation will have one (and only one) row. See how we have several rows for each team in our
summary as it is now? When we convert to a wide format, each team will have only one row.

How can we accomplish this? In this case, we have to create some new columns that combine the year
with the variables of interest. In other words, we’ll have a column for each year, for each of the four variables.
This means that we’ll have a lot more columns than we did before, but a lot fewer rows. That’s why we call
this format wide, rather than long!

There are a couple ways we can do this. One is the reshape function. This function takes a few arguments:

• the data (for the purposes of this demo, I’m just going to take a subset of my team summary data,
everything from 2010 and on)

• the timevar - this is the variable that creates the separate records for each individual observation. In
this data frame, yearID is that time variable - a team has multiple records based on different yearIDs.)

• the idvar - this is the variable that contains the identifier for each of my unique subjects. In this case,
that’s teams, but it could also be a patient ID, a specimen ID, etc

• direction - whether I’m converting to wide or to long, as reshape can do both

> wide <- reshape(subset(team_summary, yearID >= 2010), timevar = "yearID",

+ idvar = "teamID", direction = "wide")

> head(wide)

teamID total_homeruns.2010 total_runs.2010 mean_homeruns.2010

22 ARI 180 713 3.750000

71 ATL 139 738 3.232558

132 BAL 133 613 2.955556

281 BOS 211 818 3.981132

600 CHA 177 752 4.425000

741 CHN 149 685 3.386364

mean_runs.2010 total_homeruns.2011 total_runs.2011 mean_homeruns.2011

22 14.85417 172 731 3.372549

71 17.16279 173 641 3.844444

132 13.62222 191 708 3.820000

281 15.43396 203 875 4.142857

600 18.80000 154 654 3.666667

741 15.56818 148 654 3.523810

mean_runs.2011 total_homeruns.2012 total_runs.2012 mean_homeruns.2012

22 14.33333 165 734 3.367347

71 14.24444 149 700 3.634146

132 14.16000 214 712 4.115385

281 17.85714 165 734 2.946429

600 15.57143 211 748 4.688889

741 15.57143 137 613 2.584906

mean_runs.2012 total_homeruns.2013 total_runs.2013 mean_homeruns.2013

22 14.97959 130 685 2.954545

71 17.07317 181 688 4.113636

132 13.69231 212 745 4.076923

281 13.10714 178 853 3.708333

600 16.62222 148 598 3.148936

741 11.56604 172 602 3.071429

mean_runs.2013 total_homeruns.2014 total_runs.2014 mean_homeruns.2014

17

22 15.56818 118 615 2.269231

71 15.63636 123 573 3.153846

132 14.32692 211 705 4.795455

281 17.77083 123 634 2.236364

600 12.72340 155 660 3.522727

741 10.75000 157 614 3.270833

mean_runs.2014

22 11.82692

71 14.69231

132 16.02273

281 11.52727

600 15.00000

741 12.79167

Now, as you can see, we have lots of columns, but each team only has one row.
What if I want to change it back to a long format? Reshape can do that as well. First, I need to get a

list of the names in the wide format that are going to be converted to single variables in our long format.

> names(wide)

[1] "teamID" "total_homeruns.2010" "total_runs.2010"

[4] "mean_homeruns.2010" "mean_runs.2010" "total_homeruns.2011"

[7] "total_runs.2011" "mean_homeruns.2011" "mean_runs.2011"

[10] "total_homeruns.2012" "total_runs.2012" "mean_homeruns.2012"

[13] "mean_runs.2012" "total_homeruns.2013" "total_runs.2013"

[16] "mean_homeruns.2013" "mean_runs.2013" "total_homeruns.2014"

[19] "total_runs.2014" "mean_homeruns.2014" "mean_runs.2014"

If we take a look at the list of names in our wide data frame, we can see that those are variables 2-21.
Let’s assign that list of variables to a name to make it easier to call them when we’re writing our new reshape
function.

> vars <- names(wide)[2:21]

Now we can use the reshape function to convert this from a wide to a long format. In this application of
the function, we need to pass a few different arguments:

• the data

• varying - the names of the variables we’re going to be breaking apart. I assigned the full list to the
names vars, so I can just use that as a short cut

• the idvar - same as before

• direction - now I’m going to long

A note - reshape will try to guess how to break up the varying variables. By default, it expects to see the
format of varname.time, like mean runs.2010. If this is NOT how your variables are named, you can specify
what the separator is by using the ”sep =” argument. For example, if you used an underscore between your
variable name and time element, you’d pass the argument sep = ” ”

> long <- reshape(wide, varying = vars, idvar = "teamID", direction = "long")

> head(long)

teamID time total_homeruns total_runs mean_homeruns mean_runs

ARI.2010 ARI 2010 180 713 3.750000 14.85417

ATL.2010 ATL 2010 139 738 3.232558 17.16279

BAL.2010 BAL 2010 133 613 2.955556 13.62222

BOS.2010 BOS 2010 211 818 3.981132 15.43396

CHA.2010 CHA 2010 177 752 4.425000 18.80000

CHN.2010 CHN 2010 149 685 3.386364 15.56818

18

5 Continuing Your R Journey

This class has provided a basic introduction to the syntax and basic functionality of R, but there is a lot
more that R can do. Fortunately there are lots of ways to get help as you try to troubleshoot or figure out
how to do new things in R.

5.1 Recommended Books

These resources provide nice overview information to help you learn more about accomplishing general data
tasks in R.

• Lander, Jared P. R for Everyone

• Matloff, Norman. The Art of R Programming: A Tour of Statistical Software Design

• Teetor, Paul. The R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics

• Wickham, Hadley. Advanced R

5.2 Google is Your Friend

Running into an error message you don’t understand? Trying to figure out what function you should use
to accomplish what you’re trying to do? Chances are good that someone else has had your exact question,
has gotten it answered, and you can find that answer by searching Google. As you look through your search
results, a couple sites to keep an eye out for:

• Stack Overflow (http://stackoverflow.com): site where people can ask questions and the community
will answer. Sometimes people can get a bit mean if you ask questions that have been answered
elsewhere, so definitely do some searching before you post a question.

• CRAN - The Comprehensive R Archive Network (http://cran.r-project.org): basically the official site
of R. Lots of documentation is hosted there, so you can usually find thorough descriptions of functions
and packages

• R Bloggers (http://www.r-bloggers.com): user-created tutorials on a variety of topics, usually outlining
in detail various approaches for accomplishing tasks

• UCLA’s Institute for Digital Research and Education (http://www.ats.ucla.edu/stat/r/): a fairly com-
prehensive set of tutorials with lots of examples

5.3 Getting Help from the NIH Library

The NIH Library is here to help with your data and R questions! Handouts, tutorials, and (hopefully soon)
videos of previous sessions are all available at http://nihlibrary.campusguides.com/dataservices/. To request
a tutorial or consultation, please contact Lisa Federer at lisa.federer@nih.gov or use the Ask a Question form
at http://nihlibrary.nih.gov/Services/Pages/AskAQuestion.aspx.

19

